Introduzione alla Crittografia ed all'uso di GnuPG

"Trust No One!"

Mario Di Raimondo

Sommario

La Privacy

- Introduzione alla Crittografia
- Da PGP a GnuPG
- Imparare ad usare GnuPG:
 - creazione di chiavi
 - firmare e cifrare
 - gestione delle chiavi

La Privacy

- Le moderni reti di computer ci hanno semplificato la vita e ci hanno messo a disposizione nuovi strumenti:
 - posta elettronica;
 - il web;

- attraverso loro inviamo giornalmente informazioni confidenziali:
 - corrispondenza personale;
 - numeri di carta di credito;
 - informazioni sensibili.

Corriamo dei rischi?

- La natura di questi strumenti introduce alcuni problemi:
 - intercettazioni (o sniffing);
 - vecchio problema;
 - * reti "switchate";
 - ★ reti wireless!

- falsificazioni di identità;
- E' realmente un problema?
 - per alcuni si!
 - * una questione di principio;
 - * intercettazioni governative:
 - Carnivore, Echelon, …

La Crittografia

- strumento molto importante per preservare la Privacy e la cura della Sicurezza;
- problematiche:
 - segretezza;
 - autenticazione;
- strumenti:
 - sistemi di cifratura;
 - firma digitale.

Introduzione alla Crittografia ed all'uso di GnuPG – Mario Di Raimondo

Crittografia a chiave segreta (o a chiave simmetrica)

- Alice e Bob condividono una chiave segreta comune;
- Alice usa la chiave per cifrare il messaggio;
- Bob riceve il messaggio e lo decifra usando la sua copia della chiave (la stessa);
 - Lontane origini:
 - Scitale + fettuccia di cuoio (Spartani, V secolo AC);
 - Cesare;
 - Enigma (Tedeschi, II guerra mondiale).

Cifrature simmetriche odierne

- DES (1977-1998): chiave a 64 bit
- Triple-DES: chiavi a 194 bit
- IDEA (1991, brevettato): chiavi a 128 bit
- Blowfish (1993): chiavi da 32 a 448 bit
- AES [Rijndael] (2001): chiavi a 128, 192 o 256 bit
- e tanti altri: Serpent, Twofish, CAST5, RC4, RC5, ...

Distribuzione delle chiavi

- Il problema principale dei cifrari simmetrici è la necessità di scambiarsi in modo sicuro (canale sicuro) la chiave di cifratura;
- Se ci sono n persone, sono necessarie n(n-1)/2 chiavi (scambiate in modo sicuro);
- Questo può essere un grosso problema:
 - gruppo molto grande;
 - persone distanti (quindi mancanza di canali sicuri);
 - grande numero di chiavi.

Crittografia a chiave pubblica

- Nel 1976 Whitfield Diffie and Martin Hellman introdussero il concetto di Crittografia a chiave pubblica (o asimmetrici);
- Alice ha due chiavi:

chiave pubblica (comunicata a Bob);

chiave segreta (mantenuta confidenziale);

- Bob usa la chiave pubblica di Alice per cifrare il messaggio;
- Alice usa la sua chiave segreta per decifrarlo;
- analogia: "cassaforte aperta"

La coppia di chiavi

La relazione tra le due chiavi deriva da:

- particolari proprietà matematiche;
- l'assunzione che certi problemi matematici siano difficili da risolvere in tempi pratici:
 - fattorizzazione di grandi numeri;
 - * calcolo del logaritmo discreto su certi gruppi algebrici.
- Proprietà di sicurezza:
 - la chiave pubblica non da alcuna informazione sulla chiave segreta;
 - il messaggio cifrato non rivela nessuna informazione sul suo contenuto (pur conoscendo la chiave pubblica).

Risolve il problema di distribuzione delle chiavi!

Esempi di cifrari asimmetrici: RSA

 Nel 1977 Rivest, Shamir e Adleman (MIT) pubblicarono il primo sistema di cifratura asimmetrico: il sistema RSA

 la sicurezza si basa sulla difficoltà della fattorizzazione di grandi numeri;

il brevetto è scaduto nel 2000.

Esempi di cifrari asimmetrici: ElGamal

 un sistema alternativo è il sistema ElGamal di Taher ElGamal, pubblicato del 1985;

Ia sicurezza si basa sulla difficoltà nel calcolo del logaritmo discreto su alcuni gruppi algebrici.

Sistemi di Firma digitale

- L'introduzione del concetto di schemi a chiave pubblica ha creato una nuova possibilità: l'uso della Firma digitale;
- I'analogo della firma calligrafica;
- garantisce:
 - l'autenticità del documento;
 - l'integrità del testo.

Sistemi di Firma digitale

- Il sistema RSA è ambivalente: può essere usato anche come sistema di firma, usando le medesime chiavi;
- esiste anche un sistema di firma digitale che si basa su ElGamal ma sono richieste alcune piccole modifiche alle chiavi;
- il governo americano ha adottato nel 1991 come standard una variante rafforzata di ElGamal: il sistema DSA (Digital Signature Algorithm).

Simmetrici vs. Asimmetrici

Simmetrici:

- molto veloci nelle operazioni di cifratura/decifratura;
- problemi di distribuzione delle chiavi;
- Asimmetrici:
 - più lenti (richiedono più capacità computazionali);
 - risolve alcuni problemi legati alla distribuzione delle chiavi (ma non tutti!).
- Per cercare di ottenere il meglio da entrambi i sistemi si impiegano sistemi ibridi.

Sistemi ibridi di cifratura

per cifrare:

- viene scelta una chiave di sessione casuale per un sistema di cifratura simmetrica;
- viene cifrata la chiave di sessione con la chiave pubblica del destinatario;
- vengono spediti entrambi al destinatario;

per decifrare:

- il destinatario ottiene la chiave di sessione usando la propria chiave segreta;
- usa la chiave di sessione per decifrare il messaggio principale.

Sistemi ibridi di firma

per firmare:

- utilizzando particolari funzioni hash (per esempio SHA1) viene creato un "sunto" del messaggio (160 bit);
- viene firmato il "sunto" usando la chiave segreta;
- per verificare la firma:
 - viene ricalcolato il "sunto" del messaggio;
 - la verifica avviene sul "sunto" ed utilizzando la chiave pubblica del firmatario.

In origine fu... PGP

- Nel 1991 Phil Zimmermann scrisse PGP (Pretty Good Privacy);
- strumento semplice per cifrare e firmare file e messaggi di posta elettronica;

- il nome deriva da una drogheria di Lake Wobegon chiamata "Ralph's Pretty Good Grocery" il cui slogan era "se non lo puoi trovare da Ralph, probabilmente puoi anche farne a meno";
- faceva uso di RSA (allora brevettato) e di un suo cifrario chiamato Bass-o-Matic subito rimpiazzato con IDEA (brevettato); usa crittografia ibrida;
- multi-piattaforma.

La saga di PGP

- PGP fu presto esportato in tutto il mondo;
- dal 1993 Zimmermann era indagato dal governa US per "esportazione non autorizzata di armi";
- allora crittosistemi con chiavi superiori ai 40 bit erano considerate "armi militari"!
- per ovviare al problema nacque il progetto PGPi che portava fuori dagli USA il codice di PGP stampandolo e passandolo ad OCR!
- dal 1999 le regole di esportazione sono state "ammorbidite" e PGP non è più una "arma non esportabile";
- ci furono pure problemi con il brevetto su RSA...

La saga continua...

- Visti i problemi con i brevetti si pensò di aggiungere altri crittosistemi: CAST5, ElGamal e DSA;
- avvicendamenti societari: ViaCrypt, PGP Inc. e... Network Associates Inc. (NAI);
- nel 1997 fu sottoposto e accettato dall'IETF come standard: OpenPGP (RFC 2440 e 3156);
 - la NAI dopo il 2000 non pubblicò più i sorgenti (non più richiesto dalle leggi di esportazione):
 - molte polemiche e timori di possibili "backdoor";
 - Zimmermann lasciò la NAI.

E nacque GnuPG (Gnu Privacy Guard)

- PGP era diventato troppo importante per tutti;
- Ia Free Software Foundation (FSF) creò GnuPG (o GPG) impiegando lo standard OpenPGP;
- inizialmente sviluppato dal Werner Koch;
- Ia 1.0.0 fu rilasciata il 7 Settembre 1999;
- codice sorgente disponibile sotto licenza GPL;
- sviluppato da una comunità aperta e possibilità di esaminare il codice alla ricerca di bug e...;
- dal 2000 è sponsorizzato dal governo tedesco (documentazione e porting su Windows);
- solo cifrari non brevettati: DSA, ElGamal e recentemente RSA;
- cifrari rimossi: IDEA;
- "quasi compatibile" con PGP e multi-piattaforma.

Il codice aperto è importante!

- Il fatto che il codice di GnuPG sia aperto è importante per uno strumento di questo tipo:
 - piena fiducia in ciò che fa il programma;
 - semplifica la ricerca di bug o problemi di sicurezza;
 - permette a tutti di contribuire al progetto.
- Nel 2004 un ricercatore francese ha trovato un serio bug in una implementazione del sistema di firma ElGamal in GnuPG:
 - data una firma, in poco tempo si poteva trovare la chiave segreta!
 - per fortuna:
 - il sistema di firma di ElGamal non era mai stato il default;
 poche chiavi compromesse (che sono state revocate).

Impariamo ad usare GnuPG

- GnuPG è un tool da linea di comando, non possiede una interfaccia grafica propria;
- esistono svariate interfacce grafiche e plugin per interfacciarlo con i programmi di posta elettronica;
- è importante saperlo usare da linea di comando:
 - approccio multi-piattaforma;
 - <paranoia> maggiore sicurezza </paranoia>
- noi vedremo tutti i comandi:
 - da riga di comando;
 - dall'interfaccia grafica Enigmail.

Interfacce grafiche (o "frontend")

- sito di riferimento per i "frontend":
 - http://www.gnupg.org/related_software/frontends.html
- molti client di posta sono già compatibili:
 - Evolution, Kmail, Sylpheed (linux), ...
- per gli altri esistono dei plugin:
 - Mozilla Mail / Thunderbird (multi-piattaforma): Enigmail;
 - Outlook, Eudora, The Bat! (Windows);
 - Mail di Apple: GPGMail;
 - Mutt, Pine, ...
- oppure interfacce di gestione:
 - Seahorse, GPA, KGPG (linux);
 - WinPT (Windows).

Procuriamoci GnuPG

- Attraverso il sito di riferimento
 - http://www.gnupg.org
- si possono reperire copie di GnuPG compilate per molte piattaforme:
 - Linux;
 - vari Unix;
 - MacOS X;
 - Microsoft Windows.
 - paranoia> bisognerebbe controllare da dove si prende la propria copia di GnuPG </paranoia>

Creiamo le nostre chiavi

- per creare una nuova coppia di chiavi usiamo il comando:
 - gpg --gen-key
 - ci verranno richiesti:
 - *tipo di chiavi:
 - DSA e ElGamal (default);
 - DSA (solo firma);
 - RSA (solo firma);
 - * la dimensione delle chiavi:
 - DSA: fissa a 1024 bit (?!);
 - ElGamal: 1024 predefinito, 2048 bit massimo consigliato;
 - RSA: 1024 predefinito;

* una eventuale scadenza della chiave;

* nome, cognome ed email;

* una *passphrase* che proteggerà la nostra chiave segreta.

Creiamo le nostre chiavi (Enigmail)

- Enigmail -> Gestione delle Chiavi OpenPGP
 - Genera -> Nuova coppia di chiavi

🗌 Necsanic par spir c	io:	-	
, яазіці - нак	**********	Passphruse (ripel)	*************
Commerco	commento pozional	e	
ia chiave scadua .ra	5 (630)	🚽 🖃 La thiave non sc	adrà
			95 × 67
Cenera chiava . An	nulla		
Cehera chiava _ An Reycen Consola	nulla	54 (P - 52	AS ME WARMA

Struttura delle chiavi

Una chiave è formata da:

- una chiave di firma principale;
- altre sottochiavi (di firma o cifratura) opzionali;
- un ID numerico della chiave, presumibilmente unico, chiamato "*fingerprint*" della chiave;
- uno o più identificativi dell'utente.
- per vedere la *fingerprint* di una chiave si può usare il comando: gpg --fingerprint <id>
- pub 1024D/DC4FA677 2005-01-26 Mario Rossi <mariorossi@email.it>
 Impronta digitale = 76CD 9F16 2883 B5AB 4575 D4B2 1D8F B8E3 DC4F A677
 sub 2048g/878A81E2 2005-01-26

Struttura delle chiavi (Enigmail)

count / II) utente		IE chiave	Тро	Fiduci F	icuci	Scad
lario Ro	ssi <marioros< th=""><th>si@email.it></th><th>DC4FA677</th><th>pub/sec</th><th>definitiva d</th><th>efinitiva</th><th></th></marioros<>	si@email.it>	DC4FA677	pub/sec	definitiva d	efinitiva	
(= .			Provided	à della chieve			
ID a	utente prima io	Mario Rossi <r< td=""><td>nar orossi@e</td><td>mail.it></td><td></td><td></td><td></td></r<>	nar orossi@e	mail.it>			
ID (chiave	DxDC4FA677					
Tip	b .	zoppia di chiavi					
Fid	ucia calcolata	definitiva					
Fid	ucia personale	defnitiva					
Fin	gerprint	76CE 9F16 28	83 B5AB 457	5 D432 1D8F I	B8E3 DC4F A	677	
Sc	ottochiave	D	Algoritmi	Dimensione	Creata	Sca	denza
0	chiave pubblica sottochlave	0x3C4FA677 0x378A81E2	DSA E_G	1024 2048	20C5-01-2 20C5-01-2	26 ma 26 ma	

I portachiavi

- Ogni utente ha due portachiavi (o keyring):
 - uno pubblico: le chiavi pubbliche dei nostri corrispondenti;
 - uno privato: le nostre chiavi segrete;
 - * cifrato usando la passphrase;
 - * anello più debole di tutto il sistema;
 - * proteggiamo il nostro keyring segreto!
 - ***** <paranoia> conservatene una copia in cassaforte </paranoia>
 - per vedere le chiavi nei nostri keyring:
 - gpg --list-keys [id]
 - gpg --list-secret-keys [id]
 - con Enigmail basta usare il comando:
 - ★ Enigmail -> Gestione chiavi OpenPGP

Importare ed esportare le chiavi

Se vogliamo dare a qualcuno la nostra chiave pubblica la dobbiamo prima esportare:

gpg --armor --export <id> > chiave.asc

- * l'opzione "--armor" permette di fare il taglia&incolla della chiave.
- Per importare una chiave nel nostro portachiavi: gpg --import <nome_del_file>
 - Ci sono vari modi per diffondere la propria chiave:
 - sito web;
 - allegare alle email;
 - attraverso i keyserver (vedremo dopo).

Esempio di chiave esportata in ascii

----BEGIN PGP PUBLIC KEY BLOCK----Version: GnuPG v1.2.4 (GNU/Linux)

mOGiBEH3qwkRBAD3zCpvO5+i6AwHoacdAM0X72zn11qCqHKX3x6DEhzXVNvEEKBu tLuHJrvDkrnh5Kja4b67BqqqlOTOBLn+jYOaaT+mFL9wpkJJroDDmE93l1uuL640 ZlbMy+MLqm38iqO5n5hTq588EejA8Gh/9DJm1kCKuVpPe2KN5Y+sR7t7EwCqovCc hVIicUA2YqlmmKJ/FcmaC1kEAKXZZ2Zwqn1Xp4LVD4hRpGqdUCffh9CVGWaI1qq/ DeGm2rRiUwJrSuNOYFAyqLfOqpd+d2PY62P7jfSUez/dcyaALasMsElq7s6727Zo RV1sVO/WJkYZyZoeONVlnI6W/iyw8uTGt3Ll0/8rs18mskmWOxMiG11TOsF+Gh0B vqEuBACHff0aDt0UoBSqUyHPuKp3FoHHFFhp2/VluGaZktNeW5/di4v3k79P05ML XKWZPO0ccMdWN3Eaf24ER3+PtG81jRsOv+N9vfmNk3Cc4+U0+zIJ1iUNe9mVqTa/ GAncsLNR9IDpqCt0yPJ06LUtTD0W0fSRqGlnfesVzW0tqjynT7YAAAAhTWFyaW8q Um9zc2kqPG1hcmlvcm9zc2lAZW1haWwuaXO+iFsEExECABsFAkH3qwkGCwkIBwMC AxUCAwMWAqECHqECF4AACqkOHY+449xPpnc0BwCbBtJ/8/IRzi7IX9OSB1m7qk3o 298AnRS6702xt3YI6BFximEQkXcvbyGluQINBEH3qywQCADmbxnLIOF/rkqIr+sW R4VcRY30JP/flwyHe6d4RzrRe61653AOoALcASVFWMf+C/zMcWw+YZaNmTf3Z739 lqEyCN9aScTGEM3UbLphLdeazrtXRc5RyRWqYzkim1Lpr9aqGqR6EnTE1hUnH6uV 74fhW1xYuiwDqyGsPFFVcw334wC1MVxr/zj0IzocvFu7CNkskcYSncC8MIWmY5nG 8T9RkviOcTJarSiS90j3FhnSfYsZdKexSLzaL0xKRSOSbk09S0du14hJ0Y0GtGff fnuqfia4MJlnJRD5KDNso33GHcvq4oSCo6mUZ14uJch04StamLzX17CBeQvT11zn y8qbAAMFB/w0jVch3qTXcAFTPh7SNIUuXJucrx1MaGwYmBD0aRlt46nNelzb1zAa ZCNELayMi6QAlDsWUmRUfjE21RAcfA90EqdnINcu/7rUr7wUrjtP8ds7XSKfduJ5 BAUHLNQqzpbxlbeN/eEfOwkZa49RNjw7yjkreX9HiqSyPBM9PWahAPtbk2JMzNm9 rOQqtPDBwE1NMs7FoHqPyuo8bP8/cSte+j1/+mRfMSzeIKTt3viVI9huqIA40PAY fOnvrSwjRYtlZqFzL500VrtKkobmngjiEr410oPEOuoL0VjvFtbyM/tR0cilsrGn 7k9fABO+GyuDSTe0efJ9UfOb4C1VhwCjiEYEGBECAAYFAkH3qywACqkOHY+449xP pndpvOCfXy5us90qd6mrA+ZjacwEbasrHSEAnRI6rphzclc2ty4+ujPC6BpkYdqb =UCOT

----END PGP PUBLIC KEY BLOCK-----

Importare ed esportare le chiavi (Enigmail)

Con Enigmail abbiamo varie opzioni:

- File -> Importa chiavi da un file
- File -> Esporta chiavi in un file
- Modifica -> Importa chiavi dagli Appunti
- Modifica -> Copia chiavi pubbliche negli Appunti

Cifrare un file

Per cifrare un file con una chiave pubblica contenuta nel nostro portachiavi pubblico:

gpg --recipient <id dest> --encrypt <file>

* crea un file con estensione ".gpg";

- * se vogliamo un formato compatibile con il taglia&incolla dobbiamo aggiungere l'opzione "--armor";
- * si può cifrare per più destinatari (ripetendo l'opzione);
- * se vogliamo poter leggere noi stessi il file dobbiamo includerci tra i destinatari o usare l'opzione "encrypt-to <nostro id>" nel file di configurazione;

il file in realtà viene anche compresso.

Cifrare una email (Enigmail)

=	Congeographie ni estallisecreta	0.03
Hile Moofica Misualiza No Contetti Ortogra Mario Rossi «marioro Al Conto filo	Opeon Engma Strumenti 7 afla Alega CoenPGP S/MIVE Salva ssi@emailits bit not @email Use _GP/MIME per questo messaggio Isocra tenole per i dest patan	F
Cygritar ∈mail segreta Questo é it corpo di una	email che verrà cilrata in noca che solo	
<pre>#Josto = If corpo if sha l'utente the possiece la subbca of ID *F*a to B *Trus. No One *aye Purio</pre>	chisve segreta corrisportente alla chiave Landii' possa leggerne il contenulo.	
aye Perio		

Ia chiave pubblica da usare viene associata automaticamente se possibile, altrimenti viene chiesto quale usare.

Cifrare una email (Enigmail)

Alcune note marginali:

- Mozilla Mail / Thunderbird supporta nativamente un altro sistema di cifratura/firma: S/MIME
 - sistema antagonista;
 - \$ con strutture di certificazione centralizzate;
 - interfacciano con smartcard e lettori;
- per creare email cifrate esistono due standard:
 - * inline-PGP: più comune; un taglia&incolla in ascii-armor; * PGP/MIME (RFC 3156):
 - cifra anche gli allegati;
 - meno problemi con le email HTML e caratteri speciali;
 - standard supportato da pochi client: Enigmail, Apple Mail, Becky, Evolution, KMail, Mulberry, Sylpheed and The Bat!

Decifrare un file

 Per decifrare un file che è stato cifrato utilizzando la nostra chiave pubblica:
 gpg <file.gpg>

- viene impiegata la propria chiave segreta quindi viene chiesta la passphrase per sbloccarla;
- il file decifrato viene salvato nella cartella corrente con il nome privo del suffisso ".gpg".

Decifrare una email (Enigmail)

 in genere viene decifrata in automatico chiedendo la passphrase per sbloccare la chiave segreta (memorizzata per un tempo prestabilito).

ie:	Posta hiuseta Met	an Thursdomied		
<u>E</u> o <u>≺</u> ac ca <u>v</u> ielaciza V	<u>Azi Morsangio Poigna S</u>	rancon i <u>2</u>		
👌 . 🧭 📔 Scar ca poste - Scriv Rubris	ta Declifia Nispono Na	pondi e tutti Insitne	Zimina Posta Indes de	reta
Caration	Mgelrae Tutti	Ŧ	🔎 Öğgellara Milarate	
E 😴 Cartelle locali 🕞 Pesia in anixo Pesia in Jsoita Rozze Pesia invisia	Oggette Oggette Oggette Oggette	⊶ Destinata ÷ Ťarcob ar	ario 😡 Data richi@email.t 1025	
- 😡 Cestino	 □ Fuigmail: Mess apple deal □ Oggetto: email segret a Da: Mario Ross «mail Date: 18:25 A: <u>Francobianchi</u>@ 	foito ancicasi@email.it:- en ail.it		P
	Questo è il corpo di una e possiade La chiava segrata utianchi' possa leggerne il *Trust No One 4bye, Maric	noil che verrò difrate corrispondente alle s contenuto.	in moco che splo l'utento c chiava pubblica di ID 'Franco	be

Cifrature simmetriche

- Con GnuPG è possibile fare anche cifrature di tipo simmetrico (a chiave segreta):
 - utile tra persone di un piccolo gruppo (in famiglia) o per "cifrature veloci";
 - per cifrare un file:
 - gpg --symmetric <file>
 - viene richiesta una passphrase per generare una chiave di sessione;
 - si può scegliere l'algoritmo simmetrico da usare con l'opzione "--cypher-algo" (default CAST5) e visualizzare quelli disponibili con "gpg --version";
 - per decifrare si usa la stessa sintassi precedente:

gpg <file.gpg>

Firmare un file

Per firmare un file con la propria chiave segreta:
 gpg --sign <file>

- crea un file file binario con estensione ".gpg" che contiene il messaggio e la firma;
- chiede la passphrase per sbloccare la chiave segreta;
- si può usare l'opzione "--armor";
- * se si possiede più di una chiave segreta si può specificare il "firmatario" con l'opzione "--local-user";
- per creare un file unico con messaggio leggibile:
 - gpg --clearsign <file>

2

crea un file ".asc" con messaggio (leggibile) e firma;
 ideale per fare il taglia&incolla sul client di posta;
 con "--detach-sig" la firma va in file separato.

Esempio di firma in chiaro

----BEGIN PGP SIGNED MESSAGE-----Hash: SHA1

Questo è il testo dell'email che vogliamo firmare in modalità "clear signature". Il testo dell'email continua ad essere leggibile e la firma viene messa alla fine. Anche l'header è importante. Se si modifica qualunque cosa tra l'header ed il trailer la firma viene invalidata (la verifica fallisce).

Saluti Mario ----BEGIN PGP SIGNATURE----Version: GnuPG v1.2.4 (GNU/Linux)

iD8DBQFB+14BHY+449xPpncRAippAKCMOr45i2+0a74/XGS85P3p7fgOhQCgmBW6
7jwYJlUZNL/+nFhLg8SoNb0=
=Jkrq
----END PGP SIGNATURE----

Firmare una email (Enigmail)

 Composizione di 	i Documento finner	:o		0.0.0
<u>File M</u> odifica ⊻suaiza Insensci Fo <u>r</u>	mattazione <u>C</u> pzion	i E <u>n</u> gmai (<u>S</u> trument	2
nvia Contatti Ortografia Allega		+ 📂 + E Salva		2
U <u>a</u> : Mario Rossi ≺mariorossi@email.it>	 ✓ Firma il messaggi <u>C</u>ifra i messaggio 	o Ctrl–Mai Ctrl–Mai	usc+F usc+C	
	 Usa <u>P</u>CP/MIME pa Ignora regole per 	rquesto messa i destinatari	19910	
Oggetto Documento firmato			50 M.S.(11)	
Corpo cel testo 🔄 Larghezza variabile		A A B	ιυ:	に転車
Questo è il testo del documento sogreta di "Mario Rossi". L'autor integrità potrà poi essere verific corrispondente. In fede, Mario :-)	che verrà firma iticità d' questa ata usando la c	ite utilizzan 5 document 5 hiave pubb	ido la c to o la s blica	h:ave ua

Verificare una firma su un file

Per verificare (e recuperare) un file firmato: gpg <file firmato o file di firma>

- il file firmato viene estratto e salvato nella cartella corrente;
- viene segnalata la correttezza della firma;
 - id firmatario;
 - data della firma;
 - e altre informazioni...

Verifica delle firme sulle email (Enigmail)

In genere le email firmate vengono automaticamente verificate (se la chiave pubblica corrispondente è disponibile).

	Proven in - and a -	And Timber			
File Modrica Visualme W	ni Mannaggio -rigimal e	numerr d			
Scanca costa 🛛 Scanca costa	a Destra Rissendi Si	scondi a tutti incitra	Emina Pe	sta inces deraca	Stants
Catele	*gst-s:		,Q,	Dogatto z Hittente	
= 🗑 Cartello locali 🔂 Posta in arrivo 🖒 Posta in uscita 💰 Rome Dosto invioto 🌍 Cestria	Documento in nato	- Pratti Francis Francis	inale o stianch Serna . : colanch Serna . :	8 Data • 825 • 2049	
	 ⇒ Folgmall: = ma ainterno dichiave 0x00 ⇒ Oggetto: Documento fi Da: Mario Possi <mi>Data: 20/29</mi> A: trancoblanchia 	e der Mario Ross, Koredo 148637778 mate II, 2010 Innato Intoross @emolate Pemallat	rossi@emai F:= 17005-2079		9
	Questo e 1. testo del doc segreta di "Mario Dossi ; integrità potré poi essen comissionente. in foco, Nomin 😃	. merto che verrà trmat L'actenticità di crest e certinceta coendo ta	o cultifenco la culocirenco e la chuare pubblice	.11292 504	
2			1	Non le., ; 0 Tole	e: 2 🔩

Cifrare e firmare

- In genere se si cifra qualcosa è anche buona norma firmarla:
 - da linea di comando basta specificare sia l'opzione "--encrypt" che quella di firma;
 - da Enigmail basta spuntare entrambe le opzioni nel menu OpenPGP;
- quando ricevuto, GnuPG provvederà automaticamente a decifrare il contenuto e a verificare la firma apposta;
- nota: GnuPG in realtà applica prima la firma e poi la cifratura; l'inverso non è sicuro.

Usare i keyserver

Una serie di server distribuiti nel mondo:

- facilitano lo scambio delle chiavi;
- aumentano la reperibilità delle stesse;
- attraverso loro si può:
 - inviare la propria chiave pubblica;
 - ricercare le chiavi pubbliche altrui;
 - i server si sincronizzano tra loro;
- sceglietene uno:

2

- attraverso l'opzione "--keyserver";
- attraverso le preferenze di Enigmail;
- ATTENZIONE: le chiavi pubblicate non si possono cancellare, ma solo revocare! Pubblicate solo quando sicuri.

Inviare una chiave al server

- Per inviare una o più chiavi ai keyserver:
 gpg --send-keys <id>
- con Enigmail basta usare il comando dal menù contestuale:
 - Invia chiavi pubbliche al keyserver

(ccount / ID utente		ID ch ave	Tipo	Ficuc	h
Franco Blanch Infrancoblanch Mario Rossi I mariorossi (Copia ch Esporta	lavi pubbliche chiavi niun fle	negli Appı ə	unti	P
	rivia cilia Ricarica	wipubbliche a chiavi pubblich	i keyserve ne dal keys	r server	
	- rma ch mposta i	ave ficucia del a c	hiave		-

Cercare una chiave sui keyserver

Per cercare una chiave sui keyserver:

gpg --search-keys <id o email>

* se ci sono più occorrenze, queste vengono visualizzate (con relativo identificativo) e viene chiesto di scegliere quale scaricare;

con Enigmail:

possono essere scaricate automaticamente, ma state attenti...

Attacco "man in the middle"

 Purtroppo i crittosistemi a chiave pubblica sono vulnerabili ad un attacco sulla rete:

- l'avversario adesso conosce il contenuto dei messaggi in transito senza che sia scoperto;
- esiste un attacco simile per le firme digitali.

Soluzione: Web of Trust

Dove sta il problema?

- la chiave pubblica usata per cifrare non corrisponde effettivamente all'identità di chi l'ha creata (e che possiede la chiave segreta);
- in S/MIME la bontà delle chiavi pubbliche sono garantite da *authority* certificanti centralizzate;
- in OpenPGP il compito di certificare le chiavi pubbliche viene delegato agli utenti stessi:
 - un utente può firmare le chiavi pubbliche degli altri;
 - in un certo senso, l'utente fa da "garante".

Web of Trust: il principio

 Alice si fida di Carl e ha una "copia sicura" della sua chiave pubblica;

Alice

- Carl ha firmato la chiave pubblica di Bob e Alice verifica la correttezza di tale firma;
- Conseguenza: Alice si può fidare che la chiave di Bob sia autentica (pur non avendo mai avuto a che fare con Bob).

Carl

Bob

GnuPG ci avverte

Se non ci sono indizi che la chiave pubblica che stiamo usando sia sicura, GnuPG avvisa in fase di verifica delle firme (anche se corrette):

gpg: Firma fatta mer 26 gen 2005 23:37:07 CET usando DSA con ID 0BCC88DA
gpg: Firma valida da "Franco Bianchi <francobianchi@email.it>"
gpg: ATTENZIONE: questa chiave non è certificata con una firma fidata!
gpg: Non ci sono indicazioni che la firma appartenga al proprietario.
Impronta digitale della chiave primaria:
 C5F3 40CE C436 4D27 77A8 55E9 393F 212D 0BCC 88DA

C Enigmail:	SENZA FIDUCIA Firma autentica per Franco Bianch	
⊵ Oggetto:	Email firmata	
Da: Data:	Franco Bianchi <francobianchi@emai.it> 23:42</francobianchi@emai.it>	02
A:	tharitross(@emailil	

Firmare una chiave pubblica

- Importante: prima di firmare una chiave altrui bisogna verificare che essa corrisponda all'identità dichiarata:
 - di persona o per telefono facendosi dettare la *fingerprint*;
 - ai key signing party.

2

- Per firmare la chiave una volta verificata: gpg --sign-key <id>
 - * si assegna un grado di fiducia:
 - non dichiarato;
 - non ho controllato per nulla l'identità;
 - I'ho controllata superficialmente;
 - I'ho controllata molto attentamente;

viene chiesta la passphrase per sbloccare la nostra chiave segreta per creare la firma sulla chiave.

Introduzione alla Crittografia ed all'uso di GnuPG – Mario Di Raimondo

Firmare una chiave pubblica (Enigmail)

Dal menù contestuale: Firma chiave

	Envarier - Trive duave	
Chieve de firmare	Franco Dianchi ≪francoblanchi@∈mail it > - 0x0DCC00DA	
Fingenprint:	C3-3 / CC = C136 1027 7788 55E8 393- 2120 DBCC 880A	
Fina cor la chieve	Mario Ross i Marioross (Serris III) - 5x0017//677	Ð
- Cliante accliratem	ente hai verificato che la chiave che stal per firmare appartenga effettivemente alla/e persona/e scritta/e qui sco	'a' -
🐨 Non rispondo		
🔿 Non ho controll	ate affatto	
C Fo controllate s	su perficia m'ente	
💭 Ho controllate e	ran granee aceuratema	
El Firma loca mente	(non quò essere esportada)	
	Ann.	

Una volta firmata bisogna mandare la chiave firmata al *keyserver*, così ognuno potrà scaricare anche la nostra firma al prossimo scaricamento o aggiornamento della stessa.

"Il tuo amico è pignolo?"

- Il Web of Trust prevede la possibilità per ogni utente di assegnare un "grado di fiducia" che nutre nei confronti delle persone che conosce; indica la capacità di verificare le chiavi altrui:
 - sconosciuto (valore iniziale);
 - nessuna;
 - marginale;
 - totale;
 - definitiva ("come se l'avessi firmata io!").
 - Per assegnare il "grado di fiducia":

gpg --edit-key <id> e poi il comando "trust"

sono valori confidenziali (evitate cattive figure).

Assegnare il grado di fiducia (Enigmail)

Dal menu contestuale si usa il comando:

- Imposta fiducia della chiave

Enismail -	Imposita fiducia chiav	ie.
Chiave di cui fidarsi:	Franco Bianchi <fra< td=""><td>ancobian</td></fra<>	ancobian
Quanto ti fidi della d	chlave?	
Non lo so		
🔘 NON mi fido		
🔘 Mi fido marginalr	mente	
🔘 Mi fido completa	mente	
🔘 Mi fido definitiva	mente	
-	(2
	Annulla	OK

Come funziona il Web of Trust

- Una chiave è ritenuta valida se entrambe le seguenti condizioni sono valide:
 - è firmata da abbastanza firme valide, ovvero:
 - I'hai firmata personalmente,
 - I'ha firmata un utente con fiducia piena, o
 - I'hanno firmata almeno 3 utenti con fiducia marginale; e
 - il percorso delle firme sulle chiavi che va da questa chiave alla tua propria chiave è lungo al più 5 passi;

questo è il modo in cui in genere GnuPG funziona, ma i parametri posso anche essere cambiati.

Certificati di revoca

- Se si dimentica la passphrase o
- si sospetta che:
 - la chiave segreta è stata compromessa;
 - si è perso la chiave segreta;
- bisogna revocare la propria chiave pubblica!

Per fare ciò bisogna generare un "certificato di revoca":

gpg --output revoke.asc --gen-revoke <mio id>

- * bisogna farlo subito dopo la generazione;
- stampare e masterizzare il certificato;

* <paranoia> conservarlo al sicuro! </paranoia>.

Altre cose che si possono fare

- Aggiungere altre sotto-chiavi di firma o per cifratura;
- aggiungere una foto alla propria chiave pubblica;
- cambiare la/le date di scadenza;
- aggiungere id (se si usano più email ufficiali);
- revocare singole parti (chiavi o id);
- disabilitare temporaneamente alcune chiavi nel portachiavi.

Introduzione alla Crittografia ed all'uso di GnuPG – Mario Di Raimondo

"Trust No One!"

http://www.marioland.it/stuff/talk_gnupg.pdf